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This work presents a study of a microgrid that includes an electrochemical battery
storage system. The system is Mainly powered by two renewable energy sources. The
main source is a PV system, which is the most favorable for energy production in
sunny regions, for which we propose a power optimization by analyzing two
mazximum power point tracking algorithms, namely the perturb and observe technique
and the adaptive fuzzy logic, followed by a mized technique between the two. A fuel
cell is added to the system to enhance the power availability during poor PV
production periods to ensure uninterrupted operation. A management system is
proposed to reduce dependence on batteries and mazrimize energy distribution
according to consumer meeds. The integration of hydrogen fuel cells increases the
overall lifespan of the system by minimizing the demand on the batteries, thus
avoiding deep discharge. Sim-Power-System models from the Matlab/Simulink library
were used in the system modeling. After several simulations, the rigorous analysis of
the simulated results revealed that every PV system meeded to be optimized in order
to extract the maximum power. The mixed technique shows good results with less
oscillation. Moreover, better performance of the multi-source system is achieved
through o well-defined hierarchy of priorities.
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1. Introduction

Electricity production systems are continuously improved byincreasing their efficiency
and reducing emissions of harmful substances. Indeed, on the international level, various
energy strategies are being implemented, not only to reduce or eliminate these harmful
wastes, but also to maximize energy production. In this context, countries are increasingly
turning to energy alternatives, particularly renewable energy. [1,2] Currently, researchers
are discovering several renewable energies, with some exhibiting more promising prospects
than others. Photovoltaic energy stands out as a particularly promising option for the future.
However, it requires improvements, particularly regarding optimization and energy storage
systems, to compensate for the lack of power production during non-sunny or partially
sunny periods[3-7].

Previously limited by technical constraints such as intermittent production and high
initial costs, photovoltaic systems have undergone significant improvements thanks to
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advancements in power electronics converters and computerized management [8—10] .This
transformation has resulted in a decrease in production costs and a significant improvement
in performance, thereby revolutionizing the field of solar energy. In this new perspective,
power maximization (MPPT) methods have been essential. When they are associated with a
DC/DC converter, they facilitate the power and optimal energy transfer of a photovoltaic
device by simultaneously optimizing the current and voltage. The literature covers
numerous techniques, ranging from fundamental ones to advanced, even intelligent ones.

Several elements define the performance of the MPPT algorithm: execution cost,
convergence speed, computational simplicity, power demand, sensitivity to environmental
changes, and general operational characteristics. The Perturb and Observable (P&O)
algorithm is among the first and most often used MPPT techniques. Although it offers
fairly fast performance, it also usually oscillates about the maximum power point (MPP) of
the photovoltaic (PV) panel [10-12] . Using fuzzy logic approaches and state transition
algorithms has helped this method to be improved in terms of efficiency and
implementation expenses[10,13—-18].

Despite its progress, photovoltaic solar energy still heavily relies on weather conditions
like sunlight and temperature. These two factors have a significant influence on the
production of electrical energy, which decreases the reliability of the system in case of a
failure. Therefore, it is crucial to have supplementary sources to compensate the production
deficit during periods of low or absent daylight [16,19,20]. In order to meet this challenge,
several scientists first suggest the hybridization of random energy sources. Subsequently,
other options leverage the advantage of decentralizing these resources to design microgrid
production solutions directly integrated with consumers [21-23] . Researchers recognize
hydrogen fuel cells as a viable way to get around the variability of photovoltaic solar
energy production [3,24,25] . Proton exchange membrane hydrogen fuel cells provide
numerous advantages compared to conventional storage batteries. Conventional batteries
necessitate many hours for complete recharging, and their capacity is challenging to
degradation due to fluctuations in their state of charge. In this context, hybrid systems that
integrate photovoltaic solar energy and fuel cells are highlighted as a highly promising
method for supplying electricity to remote areas, and sometimes supported by a battery
storage system to improve overall efficiency[26-28].

This article presents the study of a multi source, renewable energy base, electric power
production system, designed to meet the energy needs of rural area far from distribution
networks. The proposed system consists of photovoltaic panels, which constitute the main
source of energy [29-33] . The efficiency and operation of the photovoltaic system are
optimized through the use of power maximization techniques [27], [28], [29]. These
techniques were chosen for their ease of implementation, low cost, and ability to ensure
rapid convergence as well as optimal response time. The integration of MPPT algorithms,
such as the P&O method, allows for maintaining an oscillation around this
point[11,12,18,34]. These oscillations are reduced by using a fuzzy logic controller (FLC),
thus ensuring more stable operation. In addition, hydrogen fuel cells are used as a
supplementary energy source to satisfy power demand in low production periods. A battery
storage system is also being implemented to store and deliver this energy according to the
grid customers energy demand. Energy management is developed to prioritize sources
according to user needs and the availability of the energy flow. This study evaluates the
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feasibility of the installation, particularly in terms of meeting the energy needs of small off-
grid homes. This article highlights the advantages of hydrogen fuel cells in hybrid or multi-
source systems to mitigate the intermittency issues of solar energy and their impact on
battery stability.

This work is organized as follows: in Section 2, we discuss the system configuration and
the modeling of the battery, fuel cell, and photovoltaic panel with MPPT controller. Section
3 explains the power control technique and the system simulation carried out with
MATLAB/Simulink Sim-Power-Systems. Section 4 presents and discuss the simulation
results. At last, in Section 5, we discuss the findings of this study.

2. System description and modeling

An overview of the studied system is presented in Fig. 1, it presentsthe detailed
configuration intended to meet the energy needs of a direct current (DC) micro-grid. The
system includes a set of photovoltaic panels, supportedby a hydrogen fuel cell as a backup
source. Batteries are integrated to ensure energy storage. The chopper converter allows
photovoltaic panels to operate at their maximum power point thanks to the MPPT technique,
which optimizes the duty cycle. Furthermore, another step-up DC-DC converter, controlled
to provide an additional current source, connects the hydrogen fuel cell to the DC bus. This
architecture ensures a reliable and efficient distribution of energy, maintaining service
continuity even under extreme conditions.

Real system PEM fuel cell Emulator

PV panel system Emulator
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Fig. 1. Power system topology

2.1. PV model and MPPT controller
a. PV model

Photovoltaic single-diode equivalent circuit model, as shown in Fig. 2, is widely
adopted for PV cell modeling,because of its simplicity and satisfactory accuracy. The
model utilized in this study is the same as the one used in our previousresearchs[25,35,36].
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Fig. 2. Equivalent circuit of solar cell
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In accordance with Kirchhoff's theorem applied to the presented model,
the currents within the photovoltaic cell can be expressed as follows[37]:

= - - O

Where: , the photo-current, the diode-current and the shunt
current[25,34,37,38].

After substituting the currents  and with their expressions in equation (1), the

photovoltaic current is obtained as expressed in equation (2)[35], [36].
: ) ©

Table 1. photovoltaic panel Parameters

Symbol Parameters Values
Ppy Photovoltaic Power 80 Wp
Linppt Maximum Current at MPP 4.65A
Vmppt Maximum Voltage at MPP 17.5V
L Short Circuit Current 4.95A
Ve Open Circuit Voltage 21.9V
Ose Temperature Coefficient at Short-Current 3 mA/°C
Poc Voltage Temperature Coefficient of Short-Current 150mV/°C

The equations (1) and (2) represent a mathematical model of a PV panel, able to describe
the behavior of the module in Simulink. Several simulations were carried out. Fig. 3
illustrates the characteristics obtained under varying levels of solar irradiance, ranging from
1000 W/m? with an increment of 200 W/m?2. The maximum power points are indicated by
red asterisks (¥).
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Fig. 3.Electrical IV and PV Curves for photovoltaic panel

b. MPPT Controller
» P&O MPPT

Perturb & observe algorithm (P&O) is the most used MPPT technique; it consists of
disturbing the voltage by increasing or decreasing the duty cycle, and observe the behavior
of the generated power (Fig. 4.A), and then decide whether to increase or to decrease the
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duty cycle in order to move toward the MPP.The flow chart represented in Fig.4.B
describes the operation of this algorithm.
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Fig. 4.Flow chart of P&O algorithm.
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P&Ois commonly useddue to its simplicity and ease of implementation. Nevertheless,
this system has limitations, such as the presence of oscillations around the MPP and
adecrease in efficiency in case of low sunlight or rapid changes in environmental conditions.

» FLC MPPT

Suggested FLC controllers are characterized by two inputs, power variation (AP) and
current variation (Al) at sample time k. The output the duty cycle of the converter (Fig. 5).
The three primary steps of FLC are fuzzification, fuzzy logic inference system, and
defuzzification. A basic Mamdani-type system utilizing the Min-Max approach has been
employed, featuring two inputs and a single triangular-shaped membership function. Upon
sampling the voltage and current of the PV array, AP (k) and Al (k)are calculated using
equations (3) and (4), [25,37]:

()= ()— C =) )

()=0C)—-C =) @)

Table 2 describes the inference table of the FLC, where letters P, N, B, M, S and ZE
stand for Positive, Negative, Big, Medium, Small, and Zero respectively.
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Fig. 5. FLC-MPPT bloc diagram

P(k) and I(k) represent the instantaneous power and current of the solar panel,
respectively. The controller value (4D) represents the output of the fuzzy controller.

2.2.  Fuel cell model and controller

PEM fuel cells offer a number of benefits, including high efficiency, low emissions, and
the ability to generate electricity directly. the equations of the fuel cell are presented in (5),
(6), (7), (8) and (9)[19,25,37,39]

The terminal voltage of a single cell can be expressed as given by equation (5):

= - - = O

Each term of equation (5) can be calculated by the following equations:

= - (- )+ loHr—= ) o
- (_) )
- (__) @)

= @)

The parameters of the fuel cell are shown in Table 3.
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Table 3. Fuel cell parameters

Symbol Parameters Values

P Typical peak power 500 (W)
Nte Number of Cells in stack nfc 48

T Operating temperature (T) 278-308 (K)
PEM fuel cell stack Rated current ifc 20 (A)

Eo Standard reference potential (EO) 1.229 (V)

a Constant in Tafel equation (a) 0.13 (V.K)

b Constant in Tafel equation (b) 1.9¢4 (v, A-I.K_l)

The fuel cell is regulated by a feedback control system, as seen in the block diagram
inFig. 6.A. The current of the PEM fuel cell must be adjusted to a specified reference value
in order to match the consumption fluctuations. The reference value of the PEM fuel cell
current, Ir. ref, is compared tothe measured current, If meas,and the error signal is used as an
input to the PI controller, which in turn calculates the voltage reference value. This voltage
is developed in equation (10) to derive the modulation ratio, which is then compared to a
triangular wave to provide control pulses for regulating the boost DC-DC converter, we
have illustrated its power circuit in the Fig. 6.B.

& WM > 0]
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Fig. 6. fuel cell control block (A), Boost dc/dc converter (B)
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2.3. DC-DC Converter

)

The power circuit of the DC-DC boost converter used for fuel cells or PV panels is
illustrated in Fig. 6.B. The input voltage source energizes the coil when the IGBT switch is
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closed, and the Schottky diode is reverse-biased, there by providing isolation between the
converter's input and output. When the switch is turned ON, the energy accumulated in the
coil and the power source feed the load. The equation (11) gives averaged input and output
values of current and voltage.

¢ )

2.4.  Lead-Acid Battery Model

Lead-acid batteries are popularly used due to their flexibility and affordability and are
commonly found in uninterruptible power supplies and PVsystems. The main drawbackof
this type of batteries is their low energy density, but they are known for their prolonged
storage capacity[8,20,23]. The model used in this study is based on model available in the
MATLAB/Simulink [40].

3. POWER CONTROL METHODOLOGY

Figure 7 presents a flowchart illustrating the different operating modes of the Energy
Management Strategies (EMS), designed to maintain energy balance and ensure the reliable
operation of the DC micro-grid despite fluctuating conditions and load variations. The
system primarily uses photovoltaic solar energy, andin case of low PV power production, it
uses thePEM to compensate for power lack. The battery operates in charging mode during
periods of high powerproduction, and switches to discharging mode during typical power
deficits. The management strategy proposed in this work is achieved thanks to the two DC-
DC converters, as they can allow the gradual isolation of a source by acting on the duty
cycle to reduce the current and avoid electric arcs.

Read
Pload, Ppv, Soc, Pfcel, Vbat

S Ppyv=0,Bari=0,
PpﬂFiﬁ:lFﬂ- Feel=1.
Ppv=1,Barr=1,,
Feel=0,
Ppv=0Batr=1.
, Feel=,
Batteries in Charging mode Batteries in Dicharge mode

Fig. 7. Proposed energy management strategy
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4. SIMULATION RESULTS

To evaluate the effectiveness of the two MPPT techniques, namely FLC and
conventional P&O, we use MATLAB/SIMULINK, conducting simulation tests that expose
these algorithms to varying sunlight and temperature conditions. This section aims to
compare the performance of the FLC-MPPT technique with P&O with FLC correction. We
subject both techniques to simulation tests involving sudden variations in the incident
sunlight on the photovoltaic panel.
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Fig. 8. PV Voltage Fig. 9. PV current

We have tested the photovoltaic system with the MPPT controller under constant
temperature and variable irradiation, and the results present the output PV voltage and
current inFig.8 and Fig.9 , respectively. In Fig.8 , the PV voltage with fuzzy logic
controller is constant and presents excellent signal quality, but with P&O MPPT 1 and
2(with FLC correction for Aa), the signal presents low oscillation. In Fig.9 , the PV
current with a fuzzy logic controller responds well to variations in irradiation and displays
excellent signal quality without oscillation. However, when using P&0O MPPT 1 and 2, the
signal shows moderate oscillation.

The study's obtained result indicates that using a fuzzy logic controller significantly
improves control over voltage and current signals, resulting in less oscillations and a more
stable operating point compared to the P&O-MPPT1 and P&O-MPPT?2 approaches.

We have simulated the global system with a proposed management energy strategy
under variable irradiation and temperature after evaluating the proposed PV system and
selecting the optimal MPPT controller.

The signals of irradiation and temperature are depicted in the figures, Fig.10 and Fig.
11, respectively.
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Fig. 10. Irradiation profile

Once we inject the irradiation and temperature profiles into Matlab/Simulink, the
management strategy controls the sources, leading to the simulation results shown below.

Fig. 12 presents the PV and FC voltages, with the PV voltage being Vmpp = 52.5V DC
and the FC voltage being Vfc = 37V DC, both of which remain constant without any
oscillations.

This voltages value is boosted to 102 volts with the DC chopper. Fig. 13 presents the DC
bus obtained by the outputs of PV and FC sources.

120 T T T T T T 120
100 ¢ 100
— 80f - PV =80
% — FC g
@ 60t 2 60
5 :
4 4[]V @ 40
201 20
0 il m g o 2 o o
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
Time [s]

Fig. 13. Bus Vol
Fig.12. PV and FLC voltage 1g. 13. bus Voltage

Figures 14 and 15 show the variation of power for PV, FC, BAT sources, and the busDC
(nano-grid). The nano grid (Bus power) receives power from thePV source in the interval 0
to 0.1s, with battery assistance. The FC is used to power the DC bus alongside with the PV
panel in0.1 to 0.2s,with the battery compensating for any deficit.In unfavorable conditions,
the FC and BAT feed the nano grid, with assistance from the PV panels. The presented
results show that the solar panels, the fuel cell, and the batteries work together to supply
power to the DC nano grid, regardless of sudden load changes or unfavorable irradiation
and temperature conditions.
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S. Conclusion

This paper presents an approach to manage renewable electric energy sources, focusing
on rapid dynamic response through closed-loop system control. It highlights the potential
response time of the fuel cell as the main backup source for the system. By comparing the
Perturb and Observe Maximum Power Point Tracking (P&O-MPPT) technique with Fuzzy
Logic Maximum Power Point Tracking (FL-MPPT), it is observed that the latter generates
fewer oscillations and offers a more stable operating point. This results in accelerated
convergence and response time of the system. Simulation results showed up the increased
precision of the fuzzy controller for Maximum Power Point operation, as well as low bus
voltage oscillations. Furthermore, in the event of sudden load changes, the results
demonstrate that power is jointly supplied by solar panels, the fuel cell, and the batteries. In
perspective, the experimental system is currently under construction, and promising results
are being achieved.
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